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t h a t  the  S i - 0  bond lengths within the  silicon oxygen 
ring are larger t h a n  the peripheral  bonds S i l -0 i ,  
Si9-09 and Si2-04 in crocidolite and actinolite. This 
is not  true,  however,  in the case of cummingtonite .  

Table 7. Interatomic bond angles in cummingtonite 

Si-O-Si 

SiI-05-Si 2 142.9 °, 139.4 ° 
SiI-OG-Si 2 141.4 
Si1-07-Si I 142.2 

Mean 141.5 ° 

O-Six-O 
O7-Sil-O 1 110.5 ° 
OG-Sil-O 1 109.9 
Os-Sil-O 1 109.8 
07-Si1-0 s 108.8 
06-Si1-05 109"3 
O5-Sil-O 7 108"6 

Mean 109-5 ° 

o-sig-o 
04-si2-02 116.3 ° 
05-si2-09 109.0 
06-si~-09 107-7 
05-si9-06 110-3 
06-si2-04 104.7 
04-si~-05 109.0 

Mean 109-5 ° 

Though the si l icon-oxygen distances within two 
S i - 0  t e t rahedra  are not  significantly different,  the  
0 - S i - O  bond angles show tha t  the S i l - 0  t e t rahedron  
is more regular,  in which 0 - S i l - 0  bond angles range 
from 108.6 ° to 110.5 °, while 0 - S i 2 - 0  bond angles 
range from 104.7 ° (06-Sir-04) to 116.3 ° (04-Si2-02). 
I t  m a y  be noted t h a t  the  two distorted te t rahedra l  
angles in the  Si2-0 t e t rahedron  involve 04. The 
distort ion in the Si2-0 te t rahedron,  therefore, is 

certainly caused by  the  strong a t t rac t ion  between O4 
and Ma. 

The closest approach between oxygen a toms in two 
neighboring silicate chains is 2.97 /~. This distance is 
very  comparable  to those in crocidolite and actinolite, 
which are 2.97 and 2.9 A. 
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A Theoret ical  Study of Pendel lSsung Fringes.  

Part 2. Detai led Discuss ion  Based upon a Spherical  Wave Theory 
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Based upon the general formulation of Par t  1, explicit expressions for the crystal wave fields and 
the vacuum wave fields are obtained assuming a spherical wave as the incident beam. For thick 
parts of crystals, absorption effects are taken into account. The same results as expected from the 
energy-flow theory (Kato, 1960) are obtained as a special case. 'PendellSsung' phenomena of X-rays 
are discussed. In particular, 'hook-shaped' patterns (Kato & LanK, 1959) can be fully explained. 
Values of integrated intensity according to the ordinary theory do not need to be revised. 

1. I n t r o d u c t i o n  under  a category in which (a) a spherical wave ap- 
In  P a r t  1 (Kato,  1960), we arr ived a t  the conclusion proximat ion is more appropria te ,  yet  a t  the  same t ime 
tha t  single-crystal diffraction in X - r a y  cases falls (b) the curva ture  of the wave surface of the  incident 
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wave can be neglected. Following this conclusion, 
a theory has been developed assuming a spherical 
wave as the incident wave. We will call it spherical- 
wave theory, in contrast to the ordinary theory 
which may  be called plane-wave theory. This develop- 
ment was necessary for understanding 'PendellSsung' 
phenomena in X-rays. I t  is also of interest because in 
certain respects the theory is an extreme alternative 
to the plane-wave theory. 

The problem is essentially that  of evaluating wave 
fields in an explicit form based upon the equations 
from (19) to (22) of Par t  1. A steepest-descent method 
is applicable for this purpose. In our problem, how- 
ever, this approach is not perfectly satisfactory because 
the dispersion surface has an unusual form. The 
method is useful only for the relatively thick parts 
of a crystal. If the condition (b) is satisfied, however, 
the required definite integrals for the non-absorption 
case can be evaluated directly. Thus we can obtain 
wave fields for almost all cases of practical interest. 

With respect to the intensity distribution of the 
transmitted and the reflected beam averaged over the 
'PendellSsung' periodicity, the results are compared 
with the energy-flow theory (Laue, 1952; Kato, 1960). 
'PendellSsung' phenomena are discussed and com- 
parison made with the theory developed in electron 
cases. Both energy flow and electron theory are based 
upon the plane-wave assumption, but hook-shaped 
patterns (Kato & Lang, 1959) are understandable 
only in terms of the present theory. In connection with 
traverse patterns, integrated intensities are also dis- 
cussed and are shown to be the same as those given 
by the plane-wave theory. 

2 .  C r y s t a l  w a v e  f i e l d s  

We start  from equations (1-19)* and (1-20) using 
F~(K) of equations (1-9) in place of F(K). Thus we 
obtain crystal wave fields as follows: 

Transmitted wave : 

i 
8~r~KJ J_~ cos (K^z) exp i T ( O d K x d K ~ .  (1) 

Diffracted wave 

~ ) _ i  exp 2:~i(g.r) I f : :  C(j ) 
- 8~2K cos (K^z) exp iT (J )dKxdKy ,  

(2) 
where 

TO)= (K. r~)+ {k0). ( r -  re)}. (3) 

The vector r is the position vector of the point of 
observation, and r e  specifies a point on the incident 
surface. Wave vectors K and k(J)are connected by 
a tangential continuity relation expressed by 

k(0 = K + nA(J), (4) 

where n is an inwardly directed normal of the incident 
surface and A 0) are given by equations following (see 
equation (7)). 

For convenience choose rectangular coordinate axes 
in reciprocal space with the origin at the Laue point, L. 
The y-axis is perpendicular to a plane defined by the 
reciprocal-lattice vector g and a radius vector r. 
The x-axis is the tangent to the wave surface [K[ = K  
at the Laue point*. Hence the z-axis has the direction 
of the wave vector K which satisfies the Bragg con- 
dition exactly. Call such a wave vector KB. 

In real space we use x-, y-, z-axes having the same 
directions. However, we fix their origin at the light 
source. 

Let us introduce the parameter 

s = S  2s in20e  

where S is the x-coordinate of the wave point of a 
plane wave in vacuum, so tha t  

S =  - K : .  (6) 

The angle OB is the Bragg angle, ~0 and ~g stand 
for cos (n^KB) and cos (n^Ks+2Jrg)  respectively. V~ 
is the real part  of Vo, the mean polarizability of the 
crystal. Superscripts r and i are used for specifying 
the real and the imaginary parts of a quantity.  

A (D, C~ D and C(] ) in equations (1), (2) and (4) can 
be expressed in terms of s as follows, on the basis 
of the dispersion relation given by (1-17) 

A (i) = A r + iA  ~ (7) 

K 
Ar= )~o ~/)~'~- ~X{8 ~- (82-[- B2)½} (8) 

~Bfz 
+ (s 2 + Be)½ (9) 

c(0s ) _ ~ s + (8~ + B ~)t 
- -  2(s2 + Be)½ (10) 

1 (y0/½ +1 
C(g ~)= ~ \),g/ B exp [i(5] (sf+B~.) ½. (11) 

In these formulae, the upper sign corresponds to 
the (1) branch of the dispersion surface and the lower 
sign corresponds to the (2) branch, respectively. For 
simplicity, the superscripts (j) in A ~ and A ~ are omitted. 

i r Z = V/Vg, where ~0g is the gth order Fourier coefficient 
of the polarizability, and d is the phase angle of the ~ .  
Sin Z is the polarization factor, 1 and cos 208 for 
parallel and normal polarization respectively. In ad- 
dition, 

* T h e  e q u a t i o n s  of P a r t  1 a re  r e f e r r e d  to  as  (1-19)  ; e q u a t i o n s  
of t h e  p a p e r  on  e n e r g y  f low ( K a t o ,  1960) a re  r e f e r r e d  to  as  
(E-S) .  

* In th i s  p a p e r ,  t he  d i r e c t i o n  of x -ax i s  is t a k e n  in  t h e  
oppos i t e  d i r e c t i o n  of t h a t  s h o w n  in Fig .  1 of t h e  p r e v i o u s  
p a p e r  ( pa r t  1). 
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= sin 20B/(2yg) (12) 
and 

fl=glW~l sin ZV(yg/yo)/(sin 20B). (13) 

The procedure for deriving equations (7)-(11) is essen- 
t ially the same as tha t  described in standard texts 
(for example, Zachariasen, 1945). Two remarks may 
be added. Firstly, s is related to Zachariasen's symbol 
y by 

s= - f l y .  (14) 

Secondly, we choose here the form exp iKr/(4zer) as 
the expression for an outgoing wave. Therefore, the 
signs of y~ and Z should be changed if we compare 
A* with the corresponding expressions in Zachariasen's 
book. 

3. S t eepes t -descen t  approximation 

Equations (1) and (2) have a typical form to which 
a steepest descent method is applicable (for example, 
Jeffreys & Jeffreys, 1946). Thus, the wave fields can 
be expressed approximately as follows: 

q~(j)= i exp i { - l ~  + ¼~}/(47eK). [C(0J)/cos (K n z)]~' 

× exp i[T°)]*/[IT~)z[½] *r'T(j)~, yy ½]0" (15a) 

~(j)=i exp i{-¼~ + ~}/(4~K). [C~J)/cos (K ^ ~)]0" 
× exp i[T(J)]* exp 2zi(g'r)/[IT~)zl½]*o[[ T(Oy~, ½]*~0, (155) 

where [ ]* denotes the value at a saddle point and [ ]* 
denotes the corresponding value at a saddle point 
neglecting absorption effects. T (~) and T (D are the x x  y y  

second derivatives of T(J) with respect to K~ and Ky. 
Equations (15a) and (15b) hold only when the higher 

terms in the Taylor expansion of T(J) are sufficiently 
small compared with the second terms in the range 
of g x  and K~ where ½{Tzxg~} < 1 and lfT2t yy g2~y,~ < 1. 
This condition does not cause any trouble in perform- 
ing the integration of Ky provided that  K is sufficiently 
large. In the integration of K~, we have to be more 
careful. First  of all, unless either 

I~2(K.r)/~K~[ < [~2Ar/~K2x[tO (16) 

or the reverse condition is satisfied, T (i)~ is approx- 
imately zero. Here to stands for { n . ( r - r e ) }  which is 
the distance between an observation point and the 
incident surface. The difficulty arises because the cur- 
vature of the wave surface IKI = K  and the (1) branch 
of the dispersion surface are opposite to each other. 
Thus, the higher terms cannot be neglected. I t  should 
be noticed tha t  condition (16) is equivalent to the 
condition (b) described in Section 1. 

Secondly, if A" is not to be neglected in equation (4), 
i.e. we are near a Bragg reflection, another condition 
on the thickness to should be satisfied. The necessary 
condition in our particular case can be written 

r 3_ ± 2 V21A~zz[/3 < lA~l"to", (17 

where the subscript x means a derivative with respect 
to Kx. 

(a) Non-Bragg reflection cases 
We assume tha t  the reverse condition of equation 

(16) is sufficiently well satisfied. This case is not 
important  from the viewpoint of diffraction. Con- 
sideration of it, however, illustrates applicability of 
the present method, particularly for the t ransmit ted 
beam. 

Saddle points are found by a simple calculation to be I ~Kz 
x + - - z = O  

~Kx 

~K~ 
~Ky z = 0 ,  

which gives 
[gx /Kz]*=x/z  (18a) 

and 
[Ky]*--0 .  (18b) 

Consequently, we have 

[ ( K . r ) ] * = K r  . (19) 

In addition, we can write 

(r/K) (20a) 
[T~x)]* = - [cos 9. (K ^ z)]* 

and 
IT(J)] * = - ( r / K ) (20b) y y j  

In this case, both of C(j ) and one of C(J ) are equal to 
zero and the other C(0 j) is 1. For the last-named (j), 
A (D tends to ½Kv2o/7o. Thus, from equation (15a), 

1 
(p(ol) + q~(o2) = 4~nr ex p {iKr+½iKv/oto/yo}. (21) 

This is the expected result since we assumed a spherical 
wave as an incident wave. 

(b) Bragg reflection cases 
The integration Ky can be carried out just as 

described in case (a), since A(J) does not include Ky. 
In this section, we assume to to be large enough to 
satisfy the conditions (16) and (17). Therefore, we are 
concerned with a fairly thick crystal in which absorp- 
tion may not be neglected. In performing the inte- 
gration of Kx, however, we start  first from a non- 
absorbing crystal. From equations (3), (4), (5) and (6), 
neglecting terms higher than the second in the Taylor 
expansion of (K.r )  around the Laue point, we may 
write T (~ = (K. r) + A(J){n • ( r -  re)} as follows : 

T 0)~_ (Kz) + P - [sq ~ a(s ~ + fl2)½]t0, (22) 
where 

Ky~ Yg - 1 x +  to 
P -  2 sin 20B Y-O 2-~0 (23) 

and 
q = (x-- ato)/to. (24) 

Throughout these expressions x and z are used for 
x- and z-coordinates of the radius vector r. 
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The saddle-point  condition, ~TO)/~Kx = 0, gives 

[s/(~2 + /~)~]*  = + q l ~ , .  (25) 
If  we write 

X =  +_ q/a (26) 

the parameter  X is exact ly  the same as tha t  given by  
equation (E-3), since equat ion (14) holds. Given r 
and consequently q, we can determine the parameters  
[s]0* and X. I t  should be noticed tha t  the parameters  
Is]0* and X corresponding to the same observation 
point but  to the different branches of the dispersion 
surface have opposite signs. We call such saddle 
points conjugate. 

If  we denote by  Re a radius vector re which is 
parallel  to the vector K~, we can write T(D as 

T0) = (K. R~) + {k(~). ( r -  R~)}. (27) 

By  the same approximat ion  used in deriving (22), 
the saddle-point condition gives 

~T(# _~ { ~k0). (r--  R~)} = 0 .  (28) 

This means  tha t  we m a y  subst i tute  

r -  R~ = v l ,  (29) 

where the direction u is the normal  of the dispersion 
surface at the saddle point. Thus 

T(~) = (KL) + (k 0). v)l (30) 

in which L is the magni tude  of R~. Then through 
equation (25) k (~) and T(x~x ) m a y  be expressed as func- 
tions of the observation point. 

Next  we consider absorption effects. In  absorbing 
crystals, the  saddle points cannot be determined on 
the real axis of K~, because the quanti t ies  A(~) include 
an imaginary  part.  Since A i is not very large, however, 
we can use the saddle points for non-absorbing cases 
as first approximation.  Actually,  we take into account 
absorption effects only when evaluat ing the phase 
term [T(D] *, as has been assumed al ready in equation 
(15).t 

T(Z= [T]0* + [ ~ - £ j 0  (u + iv) + ½ [ ~--~2j ° (u + iv) 2 + . . .  
(31) 

in which 
u + iv= K x -  [Kz]*.  (32) 

Therefore the saddle points are given by  the condition 

OT/OKx=i[OA'/~Kx]*oto+[O~A/OK~]*to(u+iv)=O (33) 

since [ OT'/OKx]* = 0 and (0~K~/~K~)z can be neglected. 
Taking the real and imaginary  par t  of equation (33), 

u and v m a y  be determined easily. Thus, it  turns 
out tha t  

[T]*=[T]* +/[aT, (34) 

w h e r e / [ a T  is given by  

AaT= 

/ Jo 
(35) 

Quantit ies involved here can be evaluated by  dif- 
ferentiat ion of equations (8) and (9). In  order to 
est imate the magni tude  of AaT we consider a sym- 
metr ical  Laue case" ~,o= yg. In this case it turns out 
tha t  

AaT= ~_ + lfl(s)z2aflto+½f2(s)zaafltoi, (36) 

where f l  and f~ are less than  1 and they  tend to zero 
for both the extreme cases in which s tends either to 
zero or to + ~ . t  Thus we see tha t  we can neglect 
correction terms for absorption under  the usual ex- 
per imental  conditions where Z < 0.1. 

Using the above results we f inal ly obtain the crystal  
wave fields as 

(p(o 0 = (i/87~)(1/tor)½ (fl/K~x)½ (1 + X)/(1 - X2)t 

× exp iKL .exp  i ( k . v ) / . e x p  - A %  (37a) 

~(~) = (~/8~)(1/to,.)~ (~/K~).~ (1 - X ) / ( 1  - X~)~ 

× exp iKL.  exp i (k .  v)l. exp - Aito (37b) 

(p(~l) = (i/8:~)(11tor)½ (~IKa)~- (~,o/~,g)½ 

× exp i { b + 2 ~ ( g - r ) } / ( 1  -X2)¼ 

× exp iKL .exp  i(k.v)l  exp -Ai to  (38a) 

cf~2) = ( -  1/8~)(1/tor)½ (fl/Ka)~ (7o/7~) ~- 

x exp i {~+ 27e (g. r)}/(1 - X 2 )  I 

x exp iKL.  exp i(f~. v)l exp - Aito. (38b) 

Here we use k and A i for k 0) and A d)i and also k and 

A~ instead of k (2) and A (2)i in order to emphasize tha t  
they  correspond to conjugate points. 

4. Wave field of non-absorbing crystals 

Under  usual  exper imental  conditions, roughly speak- 
ing, the critical thicknesses are a few tenths  of a mm.  
to satisfy condition (17) and of order 10ft to satisfy 
condition (16) along the direction q = 0 .  On the other 
hand,  fringe distances are of order 50ft. Thus, i t  is 
very  necessary to obtain a more rigorous expression 
for wave fields in the thin crystal case. In  this section 
we assume only the condition (16), and we neglect 
absorption. 

Subst i tut ing for C(0 D, C(] ) and T(D from equations 
(10), (11) and (22) in equations (1) and (2), 2:F(j ) and 
Zg~ j) can be integrated directly (Appendix A). The 
results are as follows, when [q] < a, 

Jr Hero we have omitted the superscript (j), and we will t In asymmetrical eases, Y0~:Yg, fl  and f2 do not tend to 
do so when no confusion is likely, zero in the case s= 0. 
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Z ~ 0 - - ( -  i/4[/2z)(1/Kr)½ 

x exp i{-¼7r + (Kz)+ P} 

× fi((a - q)/(a + q))½J~ (~) (39a) 

~q~(D- ( _  1/4 [/(2xr))(1/Kr)½ 

z exp i ( - i J r  + (Kz)+ P + 2~(g-r )}  

× (Ky~g sin z/sin 20B). Jo (~) • (39b) 

In these expressions 

= toil (oc ~ -- q2)½ (40) 

and J0 and J1 are the zeroth and the first-order Bessel 
functions, respectively. 

When I ql > a we find 

~(00 = 0 (39c) 

2:~(g') = 0 .  (39d) 

These equations imply tha t  the wave fields are limited 
to the area between directions KB and Ks + 2~g which 
pass through a point Re (see Fig. 1). We shall return 
to this point again in Section 7. 

Expressions (39a, b) should tend to expressions 
(37a, b) and (38a, b) neglecting absorption and in- 
creasing the distance to. This can be shown to be so 
using the following asymptotic formulae for J0 and J ,  
for large arguments. 

J0(~)=  (2/z~)½ cos (~-¼~)  

J, (~)= (2/~)½ cos (~ + ~ )  . 

When the cosine is expressed by exponential terms, 
each term corresponds to either the (1) or the (2) wave 
of equations (37a, b) and (38a, b). 

5. V a c u u m  w a v e  f i e lds  

Vacuum wave fields near the crystal can be expressed 
by equations (1-21) and( i -22) .  These areevaluated  
by procedures similar to those described in Section 3 
and Section 4. I t  is, however, much more convenient 
to express the vacuum waves in terms of crystal waves 
described above. In the case of the t ransmit ted beam, 
the phase is expressed as 

T(J)= { ( K -  k~)). re} + {(k(o ' ) -  K0)" ra} + (K0" r) 
= T O ) ( r a ) + ( K o . ( r - r a ) } .  (411 

Since ra is an arbi t rary vector on the exit surface, 
we can specify it for a given r so tha t  we have 

r - R °  II KB, (42) 

where R ° stands for such a specified vector ra. 
Neglecting the curvature of the wave surface [K0] = 
K, {K0" ( r -  R°)} _~ K L  o where 

L O = l r - R ° [ ,  (43) 

if LO is not too large. 

Therefore, we can write the wave fields at  r in 
vacuum as 

~bo(r) = e x p  iKLO,~, q/j)(R°). (44) 
i 

Similarly, in the case of the reflected b e a m  

Cg(r)--exp iKId.~, ~0")(Rga) , (45) 
i 

where we have 
r -Rga II K B + 2 ~ g  (46) 

and 
I d =  Ir-Rgal.  (47) 

Thus, the intensity distributions over the cross sections 
of the t ransmit ted and reflected beams are given by 

I0(r) = (c/8Jr) I ~," ~(oJ)(R°)] ~ (48/ 
i 

Ig(r)=(c/8~) 1 _.~ ~(j)(R~)I 2 . (491 
i 

Comparison with the energy-flow theory 
Assuming converging plane waves with no phase 

relation between them, we expect intensity distribu- 
tions across the diffracted and the t ransmit ted beams 
as obtained in a previous paper (Kato, 1960). There 
we assumed tha t  the energy which flows through an 
angular range (Ss/K) is 

I eby= Ie(K/ fl) ( bs/K) , 

where y is given by equation (14). In  the present 
t reatment  we assume a spherical wave 1/(4~r) exp iKr  
as the incident wave. This implies tha t  the energy 
which flows through an angular range (hs/K) at a 
point r is 

(c/8xr) (1/4~r)~.r( rhs/K) . 

In order to compare the theories we equate the above 
expressions. Thus, we obtain 

Ie=cfl/(1287rarK) . (50) 

In thick crystals we may derive the intensity for- 
mulae by inserting equations (37) and (38) into equa- 
tions (48) and (49). Similar formulae are also obtained 
from equations (E-10) and (E-11) based upon the 
energy-flow theory. In these formulae [dX/dp] (6p/6~) 
and IdX/dpl (5p/6 U) are given by equations (E-B3a) 
and (E-B3b). Thus, it turns out tha t  equations (E-10) 
and (E-11) become 

Io(~)=Ie/(4toa)" 1 / ( 1 - X 2 )  ½ 

x {(1 + X)/(1 - X ) .  exp - 2 A %  

+ (1 - X)/(1 + X)- exp - 2A%} 

xg(v)=L/(4to~ ). 1/(1 - x 2 ) ~  

x {exp [ -- 2A%] + exp [-- 2A%]} 

using the notations c~, A~ and A ~ of the present paper. 
These equations are exactly the same as the intensity 
formulae based upon the spherical wave theory if we 
average the lat ter  over the Pendellhsung period. 
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In a region where equations (39a) and (39b) should 
be used instead of equations (37) and (38), the distribu- 
tions are different from what is expected from the 
simple energy-flow theory. However, we expect a 
similar intensity enhancement at the margins of the 
diffracted beam. This is easily concluded from the 
form of the Bessel function J0. 

6.  P e n d e l l f s u n ~ ,  i n t e r f e r e n c e  

(a) Section patterns 
I t  is convenient to consider the intensity fieldt 

in a crystal. The section patterns are given by the 
cross section of this IF  with the exit surface of the 
crystal as shown in Fig. 3 (see equations (48) and (49)). 
In a sufficiently deep part  of the crystal, we can 
expect sinusoidal interference between the k(v)-wave 
and the k(v)-wave. The fringe spacing along the 
v-direction passing through R~ is given by 

A = 2z/{(k(v) - l~(v)).v}. (51) 

This has been obtained already by wave bundle con- 
siderations in Par t  1. 

0 

7 ; \ 
Fig. 1. Geometrical relations between various notations. 

TO'=a, RO'=b, PO'=~:. 

In the thin crystal region, we cannot describe IF 
by such a simple interference. Still we can expect 
interference fringes in IF  since {J0} 2 and {J1} 2 are 
oscillating functions. The maxima of intensity along 
a particular direction are determined by values of 

given by $ = $ o  and ~ ,  (52) 

where $0 and $~ are the arguments of successive 
maximum and minimum points of J0 and J1 respec- 
tively. 

From equations (12) and (24) and Fig. 1 

to 2 (a 2 -  q~) = x(2 a t o -  x) 

= xx'  ( 7 o / 7 g ) ,  

where x and x' indicate the distance from an observa- 

t We abbreviate this as IF. 

tion point P to KB and KB + 2~g respectively as shown 
in Fig. 1. Therefore, we have 

~=K]yJ~] sin Z/(sin 20B)" (XX')½. (53) 

This may also be rewritten as 

~=K]y~] sin z/sin 208. (7oTg)½ ((b -- T) • (z--a))½, (54) 

where 

z = P O ' ,  a=  TO'=to tan ( n ^  KB) and 

b = RO' = to tan (n ^ KB + 2~g) 
in Fig. 1. 

In order to obtain more practical formulae we again 
rewrite equation (53) using the geometrical parameter 

p = tan O/tan OB, 

where 6) means the angle between v and the net plane. 
This is the same as introduced by equation (E-6). 
Since 

(1/1)(xx')½= {sin (OB+ O)s in  (0B-- O)}½ 

= sin OB COS O { l  - -  p2}½ 
we have 

~=Kl~v~l sin Z/(2 cos 0s). [(1-p~)/(1 +p2 tan 20B)]~l 
(55) 

= ~(p ) / .  (56) 

Equations (53)-(56) show the loci of equal phase in IF" 
Equation (53) shows directly tha t  these loci are 
hyperbolae whose asymptotes are KB and KB+2Yc~, 
passing through the point 0 (or Re). Thus our theory 
predicts the hook-spaped fringes which are observed 
in wedge shaped parts of crystals, as already reported 
(see Fig. 3). If the crystals are parallel-sided we 
predict a set of parallel fringes. These are also observed 
as expected. Combining equations (56) and (52) we 
obtain the loci of intensity maxima and also fringe 
spacings along the p-direction as follows: 

Transmitted beam" 

f i l m 0  = 1 21 ~,  - ~,,,)/-(p) (¢m+~ 

Reflected beam : 

A , , 9  = ( ~o + ~ _  ~ O ) l ~ ( p )  . (57) 

Since the conjugate wave vectors k(v) and k(v) are 
specified by s* and - s * ,  respectively, 

k (V)= K(6*)+ Aca)r(a*)n 
and 

k (v) = K( - s*) + A(2)'( - s * ) n .  

Then, using equations (24), (25) and (40), we find 

{(k (v ) -  k (v))" v}l= 2 { -  sx + ato(s + (s 2 + fie)½)}. = 2 ~ .  

Comparison with equation (56) shows tha t  

{(k (v)- ~ (v)). v} = 23(p) .  (58) 

:Now, for large m, we have the asymptotic relation 
that  



N. KATO 633 

;°+1- $~= 
~+1-;~=~. 

Thus equation (51) is an asymptotic form of equation 
(57). 

(b ) Traverse patterns 
(i) Reflected beam.--In Fig. 2, F indicates a point 

on the X-ray film. The blackness at F is determined 
by the total  X-rays passing through the corresponding 
point P on the exit surface, where PF is parallel to 
KB + 2~g. This total  energy is the sum of the X-rays 
which are excited at the incident surface between 
A and B, propagate through P, and after tha t  prop- 
agate in a direction Ks + 2u~,. Thus it can be concluded 
tha t  the blackness at F is proportional to the inte- 
grated intensity which would be obtained from a 
crystal of parallel slab form whose thickness is the 
distance from P to the incident surface. 

Fig. 2. Contribution of diffracted waves to a point F on X-ray 
film in the case of traverse patterns. 

I t  is convenient to consider the integrated intensity 
field (which we will refer to as I I  F). Contours of equal 
integrated intensity are of course parallel to the 
incident surface. The traverse pat tern is given by the 
section of the I I F  cut by the exit surface, in just the 
same way tha t  it is the section of the I F  cut by the 
exit surface tha t  gives the section pattern. 

The integrated intensity Rg is given by 

Rg= (c/STe)~g f~ lZq~(gJ)( ~)]2d~ . (59) 

The meaning of T, R and T is shown by Fig. 1. This 
expression gives the same integrated intensity as tha t  
obtained with convergent plane waves which have no 
phase relation. This is concluded on the basis of 
Parseval 's theorem for Fourier transforms, because the 
wave fields at  the exit surface have the form of the 
two-dimensional Fourier transform of the wave fields 
due to the plane-wave theory (see equation (2)). The 
question arises, however, whether the approximate 
t reatments  described above fail to indicate this cor- 
respondence. In non-absorbing crystals we can show 
tha t  the correspondence holds, by integrating equation 
(59), directly using the expressions (39b) and (54). 
(See Appendix B.) In absorbing cases, it is rather 
hard to carry out the direct integration of (59) using 
equation (38a, b) for Z~(j)(~). In symmetrical Laue 
cases, it is possible to show tha t  the above-mentioned 
correspondence exits. I t  should be also noticed tha t  the 
integrated intensities averaged over the 'PendellSsung' 
period are the same for the plane wave theory and 
the spherical wave theory, since as mentioned in 
Section 5 the averaged intensity distribution on the 
exit surface (see equations (38a, b)) is the same as 
tha t  based upon the energy-flow theory. 

The integrated intensity for the parallel slab crystal 
Rg based upon the plane wave theory is given by 
Waller (1926) for non-absorbing crystals and by Kato 
(1955) for absorbing crystals. According to them, 
absorbing affects principally the visibility of the 
PendellSsung fringes, for if the absorption is low 
enough to permit observation of PendellSsung fringes 
at all, its effects on their spacing are insignificant. 

'PendellSsung' fringe spacings are determined by 
Waller's formula 

(,2aflto 
Rg = Ie 1o Jo(Q) d~ . 

~. ~ °c~,'o: ° 

(a) (b) 

Fig. 3. (a) Intensity fields (IF) and section patterns. (b) Integrated intensity fields (IIF) 
and traverse patterns: Dotted lines are fringe maxima. 
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Therefore the maxima of I I F  are given by the con- 
dition that  

~¢~t0 = 1~ 2m+1, (60) 

where @2m+1 is a zero of J0. Since 1-{@2m+l--@2m-1} 
tends to x~ for large m the fringes can be approximated 
by a sinusoidal interference so far as fringe spacings 
are concerned. Moreover, since ~= aflt0 along q=0  
(see equation (40)), fringe spacings of the traverse 
pattern become equal to those of the section pattern 
along this direction if the crystal thickness is large 
enough (see Fig. 3). The traverse pattern of such a 
crystal is thus determined only by the waves cor- 
responding to s=0 ,  i.e., y=0 .  Thus, the tentative 
approach of the earlier paper (Kato & Lang, 1959) 
in which fringe distances were calculated in terms of 
the plane wave theory can be justified approximately 
for the thick crystal region. 

(ii) T r a n s m i t t e d  b e a m . - - U s i n g  the transmitted beam 
it is difficult to obtain a traverse pattern. Nevertheless, 
it is of interest to consider the integrated contribution 
to the transmitted beam due to Bragg reflection, 
particularly in the non-absorbing case. This contribu- 
tion may be defined as follows: 

f Ro=(c/8~)~,o {l¢cl~- I~l~}d~, (61) 
T 

where ¢~ stands for complete transmitted waves 
which are given exactly by equation (1) before inte- 
gration and ¢~ is a spherical wave given by equation 
(21). Let us divide the region T R  into two regions 
el and e2, in a rather arbitrary way. The region ee 
is defined in such a way that for the incident beam 
propagating towards ee negligible Bragg reflection 
occurs. In the region el, Bragg reflection cannot be 
neglected. In the region e% we can write 

where Xqv(o ~) are given by equation (39a) for the non- 
absorbing case. Moreover, we can neglect the inter- 
ference between the @o j) and Cs waves since they have 
very different wave vectors. Now, if we restrict our 
attention to lightly absorbing crystals we can write 

= Ro + Ro' (62) 

in deriving this, e2 is replaced by el + e2 in R0. This 
approximation is justified since el is very small and 
12:~v(0J)l has a finite value in el. Calculation shows that 

Ro = - ( Rg - ~x fl toI e) . (63) 

(See Appendix B). Therefore, if we postulate that  

R0 +Re = 0 ,  (64) 

which condition applies as long as absorption is low 

enough for the Borrmann effect to be neglected, we 
can conclude that  

Ro ' =  - I e ( a f l t o )  , (65) 

which quantity is in fact the negative of the integrated 
intensity based upon the kinematical theory. This 
result is reasonable because a transmitted beam 
travelling towards the el-region should lose some 
energy due to single scattering by an amount which 
must be predicted by the kinematical theory. Thus, 
we can interpret 122@j)1 ~ as that  part of the transmitted 
beam due to multiple reflection. 

7. D i s c u s s i o n  and  c o n c l u s i o n s  

I t  is a characteristic feature of 'PendellSsung' phe- 
nomena in X-rays that  there exists a phase relation 
among different parts of the incident wave which 
propagate in different directions. This relation is 
significant in single-crystal experiments concerned 
with spatial intensity distributions but not with 
measurements of integrated intensities. 

Energy-flow theories (Laue, 1952 ; Kato, 1958, 1960) 
cannot predict such interference phenomena properly 
since this approach excludes consideration of coherence 
between different flows. The wave-bundle approach 
(Ewald, 1958; Kato, 1952, Part 1) and the spherical- 
wave theory (Part 2) which is actually a more explicit 
but special treatment of the wave bundle approach, 
are necessary for understanding these phenomena. 
As pointed out in Section 4, the present approach 
can predict the same results as can energy-flow 
theories with respect to the limitation of appreciable 
wave fields within the area included between KB and 
KB + 2xcp,. 

We must distinguish the essential difference of 
diffraction phenomena between electron and X-ray 
cases (Part 1). Similarity of electron micrographs and 
the traverse patterns of X-rays is only superficial. 
Nevertheless, the electron theory can be applied to 
X-ray eases if we use it with proper caution. Par- 
ticularly, from a practical viewpoint, it is very con- 
venient to use it in cal.culating fringe spacings of the 
traverse pattern of thicker parts of a crystal, just as 
shown in the previous paper (Kato & Lang, 1959). 
The electron theory shows a clear geometrical picture 
of the relations between the wave vectors and the 
crystal surface. I t  should be noticed that  we will 
obtain the same patterns as an X-ray traverse pattern 
in an electron mierograph if we use an incident beam 
of wide angular range with no phase relationships. 

In thin parts of a crystal, the steepest-descent 
approach or the wave-bundle approach is not ap- 
plicable since the Fraunhofer condition in a crystalline 
medium (Part 1) does not hold in such parts. Thus, 
we can expect a contraction of the first few fringe 
spacings due to the form of Bessel functions. I t  seems, 
however, that  the magnitude of contraction is not 
enogh to explain a small discrepancy between the 
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plane wave theory and the experiments which is 
pointed out in the earlier paper (Kato & Lang, 1959). 
In  the R and r net planes of quartz we always observed 
about 10 fringes, so tha t  we cannot in this case expect 
any discrepancy. In  other cases, we would not expect 
a discrepancy of more than about 1%, which is com- 
parable with experimental errors. Rather  careful 
studies on absorption effects (Section 4) also cannot 
explain the discrepancy. We have to leave this problem 
as unsolved. 

A P P E N D I X  A 

The wave fields of non-absorbing crystals have the 
form 

X~(J ) = K 0 v 0  and Z p ~ ) = g g v g ,  (A-l)  

where Ko and Kg are constants and 

Uo= { ( - s  + (s~.+ fl~)½) exp [iato(s~+ f12)½] 

+ ( ~ +  (8~+ ~)½) exp [ - i ~ t o ( ~ +  ~/½]) 
x exp [ -  iqtos]/(s ~" + f12)½ & (A-2) 

Ug= l ~ : ( e x p  [i~to(s~+ fl~)½]-exp [ -~o ,  to (~+  t~)½]} 

x (exp - iqtos)/(s ~ + fl~)½. (A-3) 

By means of a well-known Fourier transform (see 
Sneddon, 1951) we may express (A-3) as 

G = ~=; . / o (~ to (~ -q~)  ½) lql < [~1 

= o Iq[>[~ l .  (A-4) 

If we notice a relation between Uo and U~ through 
their integrand of the form 

Uo= ~Ua/ ~(iqto) + ~Ud ~(i~to) 

we can easily obtain 

U0 = 2~fl{ (o~-q)/(a +q)}½J~(flto(ae-q~) ½) 

= 0  

Iql< [c~[ 
Iql > 1o¢[. 

(A-5) 

A P P E N D I X  B 

Integrations necessary for the integrated intensities 
are , ~ l b b - - T  

Ro=-~Ied a--~-~-_aJ~(~)dr (B-I) 

and 
7g I b 2 Rg=~ I ,d  ~ Jo (~)dv , (B-2) 

where ~ is given by equation (54) and 

d=gI~p~[ sin Z(yoyg)½/(sin 20B). (B-3) 

Using :Neumann's series for the square of a Bessel 
function (see Watson, 1944) 

J~(~)-- 

(½5)2n{ Te¢e T4¢4 
(n!) ~ 1 1 . (2n+l~)+l .~(2n+l) (2n+2)  

where 
2 n +  1 (2n÷ l)(2n + 3) 

T 2 = 2 n + 2 ,  T4= ( 2 n + 2 ) ( 2 n + 4 ) " "  ' 

we can show that  

+}, 

, fb(b- ) R0---~Ie ~ .,~ a2md2m+3(b - r)m+l('c-a)m+l dz 
m=O a 

and (B-4) 

7/: fb ¢x~ Rg = -~ Ie ~, b2md2m+l(b __ z)m( ~__ a)mdT , (B-5) 
ca m=0 

where 

1 ( 2 m + l ) ! !  
a~.m= (- )m (B-6) 

m ! ( m + 2 ) !  (2m+2)!!  
and 

1 (2m-- 1)!! 
b e r n = ( - )  ~ -  (B-7) 

(m!) ~ 2roll 

If we make the substitution 

T - - a  
- - u  

b- -~  

the integrations are reduced to the following type:  

f 
oo up-1 F(p) F(q) 

o ( l+u)  p+qdu- 1-'(p+q)" 
Moreover, 

d(b-a)  =2~xflto. (B-8) 

This is equal to the quant i ty  2A in Zachariasen's 
notation, and ~A can be interpreted as an integrated 
intensity due to a single scattering (Zachariasen, 1945). 
Thus, we can show tha t  

' R 0 ~--- - -  I e  ~ ( - - ) m  1 (2m-- 1)I! 
~=1 (2m+ 1)] 2m!I 

(2ecflto) 2m+1 
(B-9) 

oo 
)~ 1 (2m-- 1)!! (2~flt0)2m+ 1 

Rg=-~Ie  . ~ , ( -  ( 2 m + l ) V  (2m)Vt 
m=0 " "" (B-10) 
I2aflto 

- - ~- I e  J o ( ~ ) d e  
2 v0 

(B-11) 
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Orientated Crystal  Growth in Electrodeposi ts ,  in Relat ion to 
Ionic Diffusion in the Electrolyte  
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Applied Physical Chemistry of Surfaces Laboratory, Chemical Engineering. Department, 
Imperial College, London, S.W. 7, England 

(Received 26 July 1960) 

The structure and form of dendritic Cu and Ag electrodeposits from CuSo 4 and AgNO a solution 
are studied as a function of the current density (i) and time of deposition (t), by means of light 
microscopy, electron microscopy and electron diffraction. The structure and orientation are con- 
sidered particularly in relation to the time ~ of deposition giving first visible dimming of an initially 
smooth cathode (iVT--eonstant), and also in relation to the observed crystal habit. The micro- 
graphs show that  the crystals have pronounced (111) faces parallel to the plane of the stems and 
branches of the dendrites. This is associated with a preferred orientation of the deposit with a 
(110) direction normal to the cathode, although in several cases (210) orientation was developed. 
The details of the electron mierographs indicate that  the dendrites arise from the pronounced 
preferential deposition of cations on projecting parts of the cathode owing to their motion being 
limited by diffusion. This diffusion effect also accounts for the variation, with current density, 
of the deposit thickness at which twinning develops, in the results of Setty & Wilman (1955). 

1. I n t r o d u c t i o n  

Electron-di/fract ion experiments  in this labora tory  
(Finch & Sun, 1936; F inch  & Will iams,  1937) showed 
tha t  meta l  electrodeposits at  low current  densities 
tend to grow as crystals having the most  densely 
populated atomic plane paral lel  to the substrate 
( ' lateral growth').  Those formed at  higher current  
densities tend  to develop a preferred crystal  orienta- 
t ion with the most  densely populated latt ice row 
normal  to the substrate ( 'outward growth').  

Finch,  W i l m a n  & Yang (1947) have shown that ,  
even in the ' la teral '  type  of growth on a smooth electro- 
polished substrate,  preferent ial  deposition on small  
projections of the cathode surface occurs and leads to 
progressive roughening of the deposit  surface. Fur ther-  
more, i t  was concluded tha t  'outward growth' ,  wi th  
its characterist ic preferred orientation, was due to 
this tendency,  and was favoured by low bath  tem- 
perature,  low concentrat ion of the electrolyte, high 
current  density,  and absence of stirring. All these 
features indicate  tha t  such growth is due to the rapid  
impover ishment  of the solution near  the cathode, 
with respect to the cations, and the slowness of their  
replacement  by  diffusion from regions of solution 

fur ther  away from the cathode. Under  conditions very  
strongly favouring outward growth, the deposits 
develop as needle-shaped or dendri t ic  crystals having  
the above characteristic orientat ion (Finch & Layton,  
1951). 

In  view of the present impor tance  of such deposits 
for prepara t ion of powders suitable for use in powder 
metal lurgy,  we have now examined this  'outward '  
type  of cathodic crystal  growth in more detail  in the 
case of copper and silver. The results, described below, 
are considered in relat ion to the publ ished results on 
the change in cation concentrat ion near  the cathode 
as deposition proceeds, and the related stage of visual  
dimming or roughening of the cathode, which is 
observed after a t ime T of deposition given by  i UT-- 
constant  (Ullman, 1897; Sand, 1900, 1901; Sebborn, 
1933 ; Kudra ,  1934, 1935, 1936, 1937, 1938a, b ; Kaneko 
& Kawamura ,  1940; Wranglen,  1950; Ibl  & Triimpler,  
1952, 1953; Modi & Tendolkar,  1953; Ibl  1954). 

2. E x p e r i m e n t a l  

Electrodeposits were prepared from 0.1 and 0-3M 
CuS04 and 0.1M AgNOs solutions in water,  about  


